Hi there!

I am a student studying computer science.

AI/딥러닝의 기본

ML lec 03 - Linear Regression의 cost 최소화 알고리즘의 원리 설명

만능성구 2020. 4. 22. 14:30
728x90

Simplified hypothesis

H(x) = Wx

${cost(W)} = {{{1}\over{m}} \sum_{i=1}^{m} {Wx^{(i)} - y^{(i)}}}$

 

 

W = 1, cost(W) = 0

$ {{1}\over{3}} { ( (1*1-1)^{2} + (1*2-1)^{2} + (1*3-1)^{2} )} $

W = 0, cost(W) = 4.67

${{1}\over{3}}{((0*1-1)^{2} +(0*2-1)^{2} +(0*3-1)^{2})}$

W = 2, cost(W) = 4.67

${{1}\over{3}}{((2*1-1)^{2} +(2*2-1)^{2} +(2*3-1)^{2})}$

What cost(W) looks like?

${cost(W)} = {{1}\over{m}} {\sum_{i=1}^{m} ({Wx^{(i)} - y^{(i)}) ^2}}$

Gradient descent algorithm

  • Minimize cost function
  • Gradient descent is used many minimization problems
  • For a given cost function, cost(W, b),it will be find W, b to minimize cost
  • It can be applied to more general function: cost(w1, w2, ...)
  • Gradinet descent algorithm(경사하강 알고리즘) cost를 최소로 만드는 W,b를 찾는다. 일반적인 함수에 적용된다.

How it works?

  • Start with initial guesses
    • Start aat 0,0 (or any other value)  //아무 곳에서나 시작할 수 있다
    • Keeping changing W and b a little bit to try and reduce cost(W,b) // W,b를 조금씩 변경해서 cost를 줄인다
  • Each time you change the parameters, you select the gradient which reduces cost(W,b) the most possible // 
  • Repeat //반복
  • Do so until you converge to local minimum 
  • Has an interesting propery
    • Where you start can determine which minumum you end up

미분

$${cost(W)} = {{1}\over{m}} {\sum_{i=1}^{m} ({Wx^{(i)} - y^{(i)}) ^2}}$$

$$V$$

$${cost(W)} = {{1}\over{2m}} {\sum_{i=1}^{m} ({Wx^{(i)} - y^{(i)}) ^2}}$$

 

Formal definition

$${cost(W)} = {{1}\over{2m}} {\sum_{i=1}^{m} ({Wx^{(i)} - y^{(i)}) ^2}}$$

$$W := {W - \alpha{{\partial}\over{\partial W}}cost(W)}$$

 

cost(W) : 기울기 '-' 작은 쪽으로 움직이겠다 W가 큰값으로 움직이겠다.

$$W := {W - \alpha{{\partial}\over{\partial W}}}{{1}\over{2m}} {\sum_{i=1}^{m} }{({Wx^{(i)} - y^{(i)})^2}}$$

$$W := W - \alpha {{1}\over{2m}}{\sum_{i=1}^{m}} 2({Wx^{(i)} - y^{(i)})     x^{(i)}}$$

$$W := W - \alpha {{1}\over{m}}{\sum_{i=1}^{m}} ({Wx^{(i)} - y^{(i)})     x^{(i)}}$$

 

cost함수의 모양이 Convex function 이어야한다.  그래야 어디서든 정답에 도달한다.

728x90