Processing math: 100%
Hi there!

I am a student studying computer science.

AI/딥러닝의 기본

ML lec 04 - multi-variable linear regression 여러개의 입력(feature)의 Linear Regression

만능성구 2020. 4. 29. 16:35
728x90

Predicting exam score :

regression using three inputs ( x1, x2, x3)

Hypothesis

H(x)=Wx+b

H(x1,x2,x3)=w1x1+w2x2+w3x3+b

Cost function

H(x1,x2,x3)=w1x1+w2x2+w3x3+b

cost(W,b)=1mmi=1(H(x(i)1,x(i)2,x(i)3)y(i))2

Multi-variable

H(x1,x2,x3)=w1x1+w2x2+w3x3+b

H(x1,x2,x3,...,xn)=w1x1+w2x2+w3x3+...+wnxn+b

Hypothesis using matrix

w1x1+w2x2+w3x3

(x1x2x3)(w1w2w3)=(x1w1+x2w2+x3w3)

(x11x12x13x21x22x23x31x32x33x41x42x43x51x52x53)(w1w2w3)=(x11w1x12w2x13w3x21w1x22w2x23w3x31w1x32w2x33w3x41w1x42w2x43w3x51w1x52w2x53w3)

[5,3][3,1][5,1]

[5,3] [?,?] [5,1] [n,3] [3,1] [n,1] <- n= -1 or None

*H(X)=XW *

matrix이용해서 간단하게 연산한다.

[?,?] = [3,2]

WX vs XW

Lecture (theory):

  • H(x) = Wx + b

Implementation(TensorFlow)

  • H(x) = XW

이론적으로는 위의 모양처럼 쓰이지만 matrix를 쓰기위해 TensorFlow에서는 저런 형태로 사용

728x90